能量均分定理 Equipartition theorem



![图四:双原子气体的摩尔比热容对温度的理想化曲线图像。高温时比热容跟均分定理预测的(7/2)R一致(其中R为理想气体常数),但当低温时会降至(5/2)R及后来的(3/2)R,这是由于振动及旋转态被“冻结”了的缘故。均分定理的这次失败引出一个只能被量子力学解释的悖论。对大部分分子而言,平移温度Trot比室温要低得多,而Tvib则要比这要大十倍以上。一氧化碳,CO,是一个典型的例子,其Trot ≈ 2.8 K而Tvib ≈ 3103 K。对非常大的分子或不太受束缚的原子Tvib能接近室温(约300 K);例如,碘气I2的Tvib ≈ 308 K[19]。](/uploads/202501/11/DiatomicSpecHeat10321.png)
在经典统计力学中,能量均分定理是一种联系系统温度及其平均能量的基本公式。能量均分定理又被称作能量均分定律、能量均分原理、能量均分,或仅称均分。能量均分的初始概念是热平衡时能量被等量分到各种形式的运动中;例如,一个分子在平移运动时的平均动能应等于其做旋转运动时的平均动能。
能量均分定理能够作出定量预测。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以计算出系统的总平均动能及势能,从而得出系统的热容。均分定理还能分别给出能量各个组分的平均值,如某特定粒子的动能又或是一个弹簧的势能。例如,它预测出在热平衡时理想气体中的每个粒子平均动能皆为(3/2)kBT,其中kB为玻尔兹曼常数而T为温度。更普遍地,无论多复杂也好,它都能被应用于任何处于热平衡的经典系统中。能量均分定理可用于推导经典理想气体定律,以及固体比热的杜隆-珀蒂定律。它亦能够应用于预测恒星的性质,因为即使考虑相对论效应的影响,该定理依然成立。