古埃及分数
古埃及分数是不同的单位分数的和,就是分子为1,分母为各不相同的正整数。任何正有理数都能表达成这一个形式。
古埃及分数的表达形式不是唯一的,还未找到一个算法总是给出最短的形式。
贪婪算法:将一项分数分解成若干项单分子分数后的项数最少,称为第一种好算法;最大的分母数值最小,称为第二种好算法。 例如:
。共2项,是第一种好算法,比
的项数要少。
又例如,
比
的最大分母要小,所以是第二种好算法。
例子:把
转成单位分数。
所以结果是:
詹姆斯·约瑟夫·西尔维斯特和斐波那契都提出过以上的方法。
这个算法是基于贝祖等式的:当a,b互质,
有无穷多对正整数解(x,y)。


0425.png)
. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number a/b; for instance the Egyptian fraction above sums to 43/48. Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including 2/3 and 3/4 as summands, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern number theory and recreational mathematics, as well as in modern historical studies of ancient mathematics.